
/fIl. J. Solid> SI"'d.'" Vol. 16. pp. 619-42.
"-Pres. LId.. 19110. Prinled in Gneal Britain

STIFFENING EFFECT OF UNCRACKED BRICKS IN
THE STABILITY OF MASONRY PIERS

R. FRISCH-FAY

University of New South Wales. Kensington, N.S.W., Austrailia

(Received 13 March 1979; in rttJistd form 8 October 1979)

Abstract-If the joints in a masonry structure are made of a no-tension, (or low tension) material and the
bricks have a reasonable tensile strength the masonry will consist of alternative layers of cracked and
unc:racked material. Such a structure, when bent, will have a areater curvature than one made wholly of
tension resistilll material. but will display a smaller curvature as apinst a pier in bendilll where the cracked
side of the structure lacks all strength and can be regarded as lIOIl-existing. The theoretical investigation will
show how the curvature decreases as a result of stiffening elect of the unc:racked layers of brick with a
corresponding increase in the stability.

NOTATION
b width of pier
d depth of pier
e eccentricity at top of pier
t2 c!d-Sr'

x.v coordinates
Xc length of cracked region
z distance of line of action of load from concave face
A 2Pf9Eb

A, 2PPJ9Eb
B a2~+4(I-~1J)P.J3

C In(~+V~/~-1)
E,E/.& apparent elastic modulus of masonry structure, elastic modulus of joint, brick

L length of column
P axial load
a 1+I«J«401
fJ ~- a/6

P. f/~ - fJ·-1
/fi 2- 61d
S eccentricity at bottom of pier

1'/101'/2 nondimensional thickness of joint. brick
p,. nondimensional mean equivalent curvature

PItP2 curvature of joint. brick .
«"«40 tensile resistance, P/bd

I. INTRODUCTION
Analytical investigations on the stability of masonry piers hinge on the fact that the effective
depth, d, of the section decreases after cracking occurs and a cracked region forms in the pier.
This region is separated from the uncracked one by the dotted line in Fig. 1. The depth of a
crack is the variable d - 3z and disappears at Xc above the base. This problem has been
considered by Angervo[1], Chapman and Slatford[2], Royen[3] and Frisch-Fay[4]. A common
assumption made in these discussions is that for a no-tension material the stress distribution is
trapezoidal in the uncracked zone following the stress law of a homogeneous section, and
triangular in the cracked region (Fig. 1). If the material can resist a small amount of tension a
tensile stress will build up on the convex face in the uncracked zone and will define the
boundary between the partially cracked and the wholly uncracked sections.

As far as the partially cracked sections are concerned (i.e. the sections extending from x =0
to x = xc) the assumption has been made in[1-4] that the cracked part of these sections is
devoid of all strength and can be regarded as non existing material. A more realistic approach is
to look at the cracked part as a combination of cracked and uncracked layers of material. As
seen in Fig. I the brick and the horizontal joint, representing the cracked and uncracked layers,
alternate and attract different types of curvatures. It will be assumed in this discussion that
cracking will occur in the mortar layers (materialt) but not the brick layers (material 2).
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Fig. I. Deflected shape of pier.

2. THE MODIFIED CURVATURE

The curvature in the cracked layer of mortar (Fig. 1) is[4]

PI = 2P/9Ebz2

while for the homogeneous layer of brick

P2 =P(6 - 12z/d)/Ebd2
•

(1)

(2)

Equations (1) and (2) apply to a rectangular column of cross section b x d made of a material
that can resist a small amount of tension (Tt > 0; the concentrated load P is eccentrically placed
along the minor axis of the end section. The apparent modulus of elasticity of the combined
masonry consisting of one joint plus one brick is E. From Sahlin[Sl,

If alternate layers 1and 2 are arranged as in Fig. 1a dimensionless equivalent curvature for the
two layers can be represented as

(3)

such that p.., =p..,p•.
Then,

(4)
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will be the mean equivalent curvature by which PI has to be modified to account for the
stiffening effect of the uncracked bricks.

The curvature of the cracked section can now be-had by changing eqn (1) to

(5)

Let 2PPml9Eb =Apm =A.; a change of the variable in eqn (4) (see Appendix) leads to

- =l.fz.(Jd( +27 it l - 2z1d») dz
Pm XC Z.~ 711 7]2-;j2\ Y2A. y(d/2 - Btl - Z-I'

After introducing A. the following load-deftection relationship results (see Appendix):

(4a)

LYPIEI =sin- I (aYtNB)-sin-1 (6;YtNB)

+Y271Pm [~Y13 - t/> +\l'4?Cl (6)

where 13 =1/2-a/6, t/> =1/2-Bld, B =a2t/> +4(1- tNl3)Pm/3
and C = In(YPit/> +YPIt/> -I)
The length of the craked region, Xc, is needed for eqn (4a). As shown in the Appendix

(7)

The simultaneous solution of eqns (4a), (6) and (7) will yield ie, Pm and PL21EI for various
values of a,Bld, eld and 711.

The variation of Pm vs Bid for various values of a and e/d is plotted in Fig. 2. As expected, a
low tension mortar leads to greater reduction of the average curvature than a no-tension joint.

The non-dimensionalload vs deftection is plotted in Fig. 3. Here the variation of PVIEI vs
Bid is shown for a =1, 1.5,2 and e/d =0.05, 0.1, 0.15, 0.2 and 0.25. For comparison, the case of
a no-tension joint (a =1) deriving no stiffening benefit from the brick is also shown in Fig. 3.
For example, if eld = 0.05, the stability of a pier made of no-tension joints increases by approx.
5% if the stiffening of the uncracked bricks is accounted for.
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Fig. 2. Varialion of p". in terms of S/d. t/d and a.
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Fig. 3. Load vs deflection for various eccentricities and a's.

3. CONCLUSION

In replacing the idealized non-linear curvature of a partially cracked section by a curvature
composed of a linear element and nonlinear element (corresponding to homogeneous and
non-homogeneous sections, respectively) we can arrive at a more realistic equivalent curvature,
one that is smaller than the less refined one. This approach leads to a modest increase in the elastic
critical load of the pier.
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APPENDIX
The curvature in the cracked part is

PI = 2P19Ebz2 = A1z2 (I)
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if the stiffening effect of the brick is ignored, and

PI = 2P;;../9Ebz2 =A,lz2

when such stiffening is included. Here

A = 2P19Eb; and A, = 2P;;..19Eb.

Following the analysis in[4]. the squares of the slopes in the cracked and uncracked parts, respectively, are

(dllldx)2 = 2A'(d/2
1
_ ~ - d/2

1-1I)
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(5)

(8a)

(8b)

(9)

(dll/dx)/••o=0 having been satisfied. The modulus E refers to the masonry structure as a whole.
The two slopes in eqns (Sa) and (8b) are identical at II'"' ad/6 for at this section the cracked and uncracked parts meet

and both have the same slope. It follows that

P a2d2 I I
C. = EI36+ 2A• d/2-~ -2A.·d/2-ad/6

and

(10)

for the uncracked region. Integration of eqn (10) and the satisfying of xl •• ,= L results in

(II)

for the uncracked portion where

~ = 1/2- 8/d and B =a2~ +4p",(I-I/II{J)/3

For the cracked part (eqn Sa),

dx=- I dll
V2A;/1 I'

Vd/2-~- d/2-v

With the substitution of

(121)

and

(l2b)

integration of eqn (121) leads to the defteclion of the cracked portion

I
x = • r.;-:- H(z) +C2

v2A,
where

and

Here C2 has been found by equating eqns (II) and (13) at II =ad/6. There is from eqn (13)

l" '"'xcfL= I+VEIlPLl [sin-·(~W)-sin-'(aW)l

From vl••o= 8 and eqn (13) we get the load.cfeftection relationship:

(13)

(14)

(6)
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If the changes in variables, outlined in eqns (12a) and (\2b), are employed eqn (41) will change to

where

(IS)

Expanding eqns (IS) results in

11="IIYn/A..YEIIP HI

Il=27"12Y27/pOl v'EIIP Hl

I) = S4"12v'27/A.. v'EllP H)

where

and

After collecting these terms we finally arrive at the solution of eqn (4).

(16)

(17)

The simultaneous solution of eqns (14), (6) and (17) will yield PV/EI. POl and x< provided that a/6 s 6/d s 1/2, 0s f3:S 1/3,
Os~Sf3ander<3.


